日韩午夜成人精品免费网-日韩午夜短视频在线观看114-日韩性感美女在线电影一区二区-日韩亚洲产-日韩亚洲国产欧美在线看片-日韩亚洲欧美综合

撥號18861759551

你的位置:首頁 > 技術文章 > 如何測量您的成像系統中的景深

技術文章

如何測量您的成像系統中的景深

技術文章

Gauging Depth of Field in Your Imaging System

Over the years, we have answered countless questions regarding lens performance. Of those questions, none have been more difficult to define than requests for depth of field. The reason for this difficulty has more to do with the vagueness of the question than with the inability to provide a measured or calculated value. Consider for a moment what depth of field ls us. It is the distance by which an object may be shifted before an unacceptable blur is produced. For depth of field to be properly stated, it should contain not only the displacement of an image, but also a specific resolution. The depth of field specification is further complicated by a type of keystoning aberration that often occurs. This result can dramatically affect linear measurements and therefore render depth of field unusable. In this article we will take a closer look at depth of field calculations and compare them to physical measurements using the DOF 1-40 depth of field gauge. The gauge, as we will see later, offers a unique look at what depth of field really means and how we as system designers may wish to quantify this parameter. A simple geometric approximation for depth of field is shown in Figure 1.0. The linear blur (required resolution) Bp, Bm and Bf can be expressed in terms of angular blur by the following equation.

Figure 1

 

Using similar triangles, a relationship can now be made between angular blur and the focus point,

where λ is the aperture of the lens. Solving for δplus and δmin,

The derivation above is very specific to the intended resolution. However, many theoretical derivations of depth of field often assume the lens resolution to be nearly diffraction limited. The most popular of these derivations are based on microscope applications. A typical example for the total depth of field (dplus + dmin) is shown below.

Where λ is the wavelength and NA equals the numerical aperture of the lens.

In order to study depth of field we have put together a simple macro system consisting of a 25mm fixed focal length lens, 8mm spacer and Sony XC-75 monochrome CCD video camera. The system was chosen not for its performance but rather for its common real world implementation. Measurements were performed using the DOF 1-40 target. The target allows us to measure depth of field at either 1, 10, 20 or 40 lp/mm over a maximum depth of 50mm. The flat field resolution of this system is approximay 15 lp/mm at 0.3X primary magnification. For purposes of our experiment, a blur spot resolution of 0.1 mm or 10 lp/mm was chosen. Depth of field measurements were taken at three aperture settings corresponding to f/2, f/4, and f/8. An important point should be noted about aperture settings. The f-number shown on most fixed focal length lenses is calculated with the object at infinity. As a result, we have adjusted our NA and therefore our aperture values for a 95mm working distance.

The values below highlight a number of points to consider. In general our calculated and measured delta d are fairly close. However, the displacement of the image due to defocus aberrations was not predicted by our calculations. This type of displacement error could certainly be problematic if the system contained an auto iris. If we compare our measured results to the delta-theory, we notice a significant variation. As we mentioned earlier, this variation is due to a false assumption concerning system resolution.

Another property that should be noted in our DOF 1-40 observations is the non-uniform magnification seen through the depth of field range. This is a very common problem in most lenses and, as we stated earlier, can yield significant errors if measurements are made throughout the full depth of field range. Edmund Optics provides several ecentric options to correct for this type of error.

In the end, it is the total performance of an optical system that counts. As a full service supplier and manufacturer of optics, illumination, CCD cameras, monitors, mounting, and electronic imaging related products, Edmund Optics has the knowledge and resources to look at your application as a total system. In fact, innovative tools such as the DOF 1-40 have come about from our own in-house need to quantify system performance. So if you are looking for individual components that can be integrated into your system or starting from scratch, our engineers are ready to help.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
主站蜘蛛池模板: 18禁黄无码免费网站高潮 | 97午夜理论片影 | 精品国产美女在线一区二区三区 | av无码一区二区 | 2025国产精品 | 18禁美女裸身无遮挡免费网站 | 国产黑色丝袜视频在线观 | 精品国产免费看久久久 | 成人国产一区二区三区精品 | 99久久精品国产 | 国产福利小视频在线播放观看 | 成人亚洲欧美日韩在线观看 | 国产精品午夜福利久久久 | 国产免费高潮白浆二区三区 | 国产美女被遭强高 | 国产精品一国产精品 | 国产91久久精品成人看 | 国产片在线观看一区午夜 | 国产日韩亚洲欧美aap | 99国产精品永久免费视频 | 精品丰满爆乳熟妇av免费播 | 国产精品一级黄色视频 | 国产高清无码日韩一二三区 | 国产精品秘一区二区三区高潮 | 国产在线丝袜一区二区三区 | 国产成人a视频高清视频在线 | 果冻国产成人av高清在线 | 国产成人性生交大片免费看 | 99国产这里只有精品视频播放 | 成人动漫一区二区三区无码 | 2025年日本伦理片村庄 | 精品国产日韩一区2区3区 | 国产黄在线观看免费 | 18禁黄污吃奶免费看网站 | 国产91av视频在线播放 | 国产成人在线小视频 | 国产毛片毛多水多的特级毛片 | 国产成人精品福利网站人 | 97人妻精品全国免费视频 | 国产精品亚洲专区无码导航 | 国产成人av电影在线观看浪潮 |